• EN
  • ES


Noticeboard


Friday, April 6, 2018

Weekly Tip ISC: Dualidad espacio-tiempo para sistemas ópticos y sus aplicaciones

Por Mª José Erro

Los sistemas ópticos de volumen están basados en elementos considerados clásicos, por haber sido estudiados y empleados en aplicaciones prácticas desde hace siglos, como son las lentes espaciales, los prismas, los hologramas… La luz se transmite entre un componente y otro de forma natural, sin ningún tipo de guiado ni restricción, en lo que habitualmente se conoce como propagación por el espacio libre. Con este tipo de tecnología se pueden realizar sistemas de imagen con aumento o disminución del tamaño de la misma, sistemas para tratamiento de información puesto que la propagación por espacio libre permite en ciertas condiciones obtener la transformada de Fourier de una señal lo que ha dado lugar al campo de la ciencia conocido como óptica de Fourier, etc.

En las últimas décadas se han desarrollado sistemas alternativos, que emplean el guiado de señales en fibra óptica en lugar de la óptica de volumen, para permitir el procesado y caracterización de las señales en el dominio temporal en lugar de en el dominio espacial. Estos desarrollos emplean la conocida como dualidad espacio-tiempo, que se refiere a la equivalencia formal que se encuentra entre las ecuaciones que gobiernan la propagación de ondas electromagnéticas en el espacio libre (difracción espacial) y las ecuaciones de la propagación de señales temporales por guías ópticas (dispersión temporal). Análogamente, se puede encontrar un dual para las lentes espaciales, la lente temporal, que habitualmente se realiza con moduladores electro-ópticos de fase o con efectos no lineales en fibra óptica como la modulación cruzada de fase o el mezclado de cuatro ondas.

Una de las aplicaciones más básicas de esta teoría es el sistema temporal que permite obtener un pulso óptico a la salida de un dispositivo dispersivo (una fibra óptica monomodo, por ejemplo) cuya forma corresponde con la transformada de Fourier del pulso que entra en ese elemento, de forma análoga a lo que ocurre en el conocido como régimen de difracción en campo lejano (o Fraunhofer), mostrados ambos en la figura 1. La aplicación más directa es su uso como espectrómetro en tiempo real, pero también se ha empleado para el muestreo y generación de señales eléctricas de banda ancha o en sistemas de tomografía de coherencia óptica y con variantes para conformar señales ópticas, para conversión entre multiplexación temporal y multiplexación en frecuencia.

Otro ejemplo es el desarrollo de sistemas de imagen temporal que obtienen un pulso óptico a la salida del sistema idéntico al de entrada, excepto por un posible y controlable, factor de magnificación de su tamaño (figura 2). Montajes de este tipo se han empleado, por ejemplo, para el control de efectos nocivos en propagación de información en enlaces de fibra óptica.

El efecto Talbot o de autoimagen espacial describe el hecho de que cuando una onda plana atraviesa un objeto periódico reproduce una imagen de ese objeto a unas determinadas y precisas distancias, bien sea con el mismo periodo o con múltiplos del mismo. Su dual, conocido como efecto de autoimagen temporal, indica que un tren de pulsos periódicos se reproduce sin distorsión tras propagarse por una fibra óptica de la longitud precisa, pudiéndose variar la frecuencia de repetición o separación entre pulsos. En nuestro grupo hemos demostrado extensiones de este efecto que permiten la recuperación de señales de reloj a partir de un tren de datos con una exacta resincronización de las mismas, la obtención de la transformada discreta de Fourier de señales de microondas o el conformado de la envolvente de trenes de pulsos.

Se han descrito otros muchos sistemas y aplicaciones basados en la dualidad espacio-tiempo como los sistemas 2-f y 4-f temporales, la generación de peines ópticos con lentes temporales, autocorreladores temporales, cloaking temporal, inversión temporal, guías ópticas transitorias… y sigue siendo un campo de inspiración y estudio para nuevos descubrimientos.

Figura 1- Sistema de Transformada de Fourier espacial y temporal

Figura 2- Sistema de Imagen espacial y temporal

Figura 3- Sistema de Efecto Talbot espacial y temporal



Research Institutes
Jeronimo de Ayanz Building
Public University of Navarre
Campus de Arrosadia 31006 - Pamplona
Tel. +34 948 169512
Contact by E-mail