Universidad Pública de Navarra



Euskara | Año Académico: 2024/2025 | Otros años:  2023/2024  |  2022/2023  |  2021/2022  |  2020/2021 
Graduado o Graduada en Economía por la Universidad Pública de Navarra
Código: 171305 Asignatura: TÉCNICAS DE OPTIMIZACIÓN
Créditos: 6 Tipo: Obligatoria Curso: 2 Periodo: 1º S
Departamento: Estadística, Informática y Matemáticas
Profesorado:
FAULIN FAJARDO, FCO. JAVIER (Resp)   [Tutorías ] CILDOZ ESQUIROZ, MARTA   [Tutorías ]

Partes de este texto:

 

Módulo/Materia

Métodos Cuantitativos/Investigación Operativa.

Subir

Descripción/Contenidos

En esta asignatura se estudian algunos modelos y métodos de la Investigación Operativa que ayudan a determinar la mejor estrategia de actuación, con el fin de mejorar la gestión de una empresa. Proporciona al estudiante una comprensión conceptual de la función que desempeñan los métodos cuantitativos en el proceso de la toma de decisiones, cómo funcionan estos métodos, la forma de aplicarlos, cómo resolverlos utilizando programas informáticos de optimización e interpretar sus resultados.

Subir

Competencias genéricas

No aplica

Subir

Competencias específicas

No aplica

Subir

Resultados aprendizaje

RA07: Conocer la relación entre el análisis verbal, gráfico, matemático y econométrico en el estudio de la economí.

RA10: Derivar de datos económicos y sociales información relevante difícil de reconocer por no profesionales.

RA11: Utilizar criterios profesionales para el análisis económico, preferiblemente aquellos basados en el manejo de instrumentos técnicos.

RA13: Aplicar racionalidad al análisis y a la descripción de cualquier aspecto de la realidad económica.

RA14: Evaluar las consecuencias de distintas alternativas de acción y seleccionar las mejores dados los objetivos.

RA15: Aplicar instrumentos matemáticos para sintetizar problemas económicos complejos.

 

RA18: Trabajar en equipo, siendo capaz de argumentar sus propuestas y validar o rehusar razonadamente los argumentos de otras personas.

RA19: Organizar el trabajo, en cuanto a una buena gestión del tiempo, ordenación y planificación del mismo.

RA20: Seleccionar y generar la información necesaria para cada problema, analizarla, y tomar decisiones en base a la misma

RA21: Valorar el compromiso ético, social y medioambiental en el ejercicio profesional.

RA22: Seguir aprendiendo en el futuro de forma autónoma, profundizando los conocimientos adquiridos o iniciándose en nuevas áreas de conocimiento.

 

Subir

Metodología

Actividad Horas Total
Presenciales   60
Grupo Grande 45  
Grupo Pequeño 15  
No presenciales   90
Preparación y estudio de contenidos 50-60  
Trabajos individuales 15-20  
Trabajos en grupo 08-10  
Preparación de exámenes 20-25  
Tutorías (Individuales y Grupales) 01-02  

Subir

Evaluación

Resultados de
aprendizaje
Actividad de
evaluación
Peso Convocatoria Ordinaria (%) Carácter
recuperable
Nota mínima
requerida
Todos Pruebas parciales y/o realización de trabajos 25% Sí. Prueba recuperación 5 sobre 10
Todos Examen Final 70% Sí. Prueba recuperación 5 sobre 10
Todos Participación clase, ejercicios y/o tareas 5% Sí. Prueba recuperación ---

Las instrucciones sobre la evaluación de la asignatura serán presentadas durante el desarrollo de la asignatura

Subir

Temario

Tema 1: Investigación Operativa.

- Introducción a la Investigación Operativa.

- Etapas en la resolución de un problema de Investigación Operativa.

- Ejemplos de modelos estudiados en la Investigación Operativa.

Tema 2: Fundamentos Matemáticos.

- Conjuntos convexos.

- Poliedros y politopos.

- Puntos extremos y direcciones extremas.

- Funciones convexas.

Tema 3: Introducción a la Programación Lineal.

- Introducción. Hipótesis asumidas por la programación lineal.

- Formulación de problemas.

- Formulaciones alternativas de un problema de programación lineal.

- Caracterización de los puntos extremos. Óptimo de un problema de programación lineal.

- Resolución gráfica de problemas con dos y tres variables.

Tema 4: Método Simplex.

- Introducción al método simplex.

- Regla para la variable que deja la base.

- Regla de entrada en la base.

- Criterio de optimalidad.

- Método del simplex en forma de tabla.

- Obtención de la primera solución factible básica. Método de las penalizaciones.

Tema 5: Dualidad.

- Definición de problema dual en general.

- Teorema fundamental de la dualidad.

- Propiedades de los problemas duales.

- El algoritmo del simplex dual.

Tema 6: Análisis Postóptimo y Programación Paramétrica.

- Introducción. Importancia del análisis postóptimo.

- Cambios en la disponibilidad de recursos, en el vector de costos y en los coeficientes tecnológicos.

- Adición de una variable. Adición de una restricción.

- Programación paramétrica.

Tema 7: Problemas de Transporte.

- El problema del transporte. Propiedades de la matriz de coeficientes tecnológicos.

- Métodos para la obtención de una solución factible básica inicial.

- El algoritmo del transporte.

- Problema de Transbordo.

- Problema de asignación. Algoritmo Húngaro.

Tema 8: Programación Entera.

- Introducción a la programación lineal entera. Técnicas de resolución.

- Método Branch and Bound.

- Formulación de problemas de P.L.E. Aplicaciones.

Tema 9: Programación Lineal Multiobjetivo.

- Introducción a la programación multiobjetivo. Ejemplos.

- Solución eficiente y conjunto eficiente.

- Método gráfico.

- Métodos generadores: método de las ponderaciones, método de las e-restricciones, método simplex multiobjetivo.

- Programación por compromiso.

- Programación por metas.

Tema 10: Optimización No Lineal sin restricciones.

- Introducción a la programación no lineal. Ejemplos.

- Condiciones para la optimalidad de primer y segundo orden.

- Optimización de funciones convexas.

- Métodos de descenso. Búsqueda lineal.

- Otros métodos.

Tema 11: Optimización No Lineal con restricciones.

- Restricciones de igualdad:

Condiciones para la optimalidad de primer orden y de segundo orden.

Interpretación económica de los multiplicadores de Lagrange.

Método del gradiente reducido.

Otros métodos.

- Restricciones de desigualdad:

Condiciones para la optimalidad de primer orden y de segundo orden.

Interpretación económica de los multiplicadores de Kuhn-Tucker.

Métodos generales de resolución.

- Problemas con estructura especial:

Programación cuadrática. Problema de la cartera.

Programación lineal fraccional, separable y geométrica.

Tema 12: Paquetes Informáticos de Optimización.

- QM for Windows.

- LINDO.

- LINGO.

Subir

Bibliografía

Acceda a la bibliografía que el profesorado de la asignatura ha solicitado a la Biblioteca.


Bibliografía Básica

 

  1. ANDERSON, D.R., SWEENEY, D. J., WILLIAMS, T.A. CAMM, J. and MARTUB, K. (2012): An Introduction to Management Science. Quantitative Approach to Decision Making. West Publishing Company.
  2. HILLIER, F.S.; LIEBERMAN, G.J. (2021): Introducción a la investigación de operaciones. McGraw Hill.

 

Bibliografía Complementaria

 

  1. HEIZER, J.; RENDER, B. (2008): "Dirección de la Producción. Decisiones Tácticas". Prentice Hall. 8ª Ed.
  2. REID, R. D.; SANDERS, N. R. (2002): "Operations Management". Wiley
  3. TAHA, H. A.(2004): "Investigación de Operaciones". Pearson- Prentice Hall
  4. WINSTON, W.L. (2005): "Investigación de operaciones. Aplicaciones y algoritmos". Thomson. 4ª Ed.

Subir

Idiomas

Castellano.

Subir

Lugar de impartición

Aulas del edificio Aulario. Campus de Arrosadía.

Sesiones prácticas en aulas de Informática.

Sesiones teóricas en aulas asignadas por la Facultad (ver enlace): http://www.unavarra.es/estudios/grado

Subir