Código: 244206 | Asignatura: MATEMÁTICAS II | ||||
Créditos: 6 | Tipo: Básica | Curso: 1 | Periodo: 2º S | ||
Departamento: Estadística, Informática y Matemáticas | |||||
Profesorado: | |||||
PORTERO EGEA, LAURA [Tutorías ] | PAGOLA MARTINEZ, PEDRO JESÚS (Resp) [Tutorías ] | ||||
GALAR CELIGÜETA, BEATRIZ [Tutorías ] |
Funciones vectoriales de una y varias variables. Superficies. Cónicas y cuádricas.
Técnicas de integración. Introducción a los conceptos básicos de Cálculo Integral en una y varias variables reales.
Aplicaciones del Cálculo Integral.
Ecuaciones diferenciales ordinarias y en derivadas parciales. Métodos de resolución.
Las competencias genéricas que un alumno debería adquirir en esta asignatura son:
Las competencias específicas que un alumno debería adquirir en esta asignatura son:
Cuando termina la formación, el estudiante es capaz de:
Metodología - Actividad | Horas Presenciales | Horas no Presenciales |
A-1 Clases expositivas/participativas | 45 | |
A-2 Prácticas | 15 | |
A-3 Estudio y trabajo autónomo del estudiante | 75 | |
A-4 Tutorías y pruebas de evaluación | 15 | |
Total | 75 | 75 |
Resultados de aprendizaje |
Actividad de evaluación |
Peso (%) | Carácter recuperable |
Nota mínima requerida |
---|---|---|---|---|
Todos | Evaluación continua (trabajos/pruebas en clase) |
30% |
SI | no |
Todos | Examen final (preguntas de respuesta larga ) |
70% | SI | no |
Tema 1. Cálculo diferencial en Rn.
Conceptos básicos sobre funciones escalares y vectoriales de varias variables.
Límites y continuidad.
Derivadas direccionales y parciales. Matriz jacobiana y vector gradiente.
Diferenciabilidad. Regla de la cadena.
Derivadas de orden superior. Matriz hessiana.
Polinomios de Taylor.
Optimización: extremos relativos, condicionados y absolutos.
Aplicaciones.
Tema 2. Cálculo integral de funciones de una variable.
La integral de Riemann.
Teorema fundamental del Cálculo. Regla de Barrow.
Integración por partes. Cambios de variable.
Integrales impropias y paramétricas.
Aplicaciones.
Tema 3. Cálculo integral en Rn.
Integrales dobles y triples.
Integrales en curvas y superficies.
Integrales de campos. Cálculo vectorial.
Aplicaciones.
Tema 4. Ecuaciones diferenciales.
Ecuaciones diferenciales de primer orden. Ecuaciones exactas.
Ecuaciones diferenciales lineales.
Introducción a las ecuaciones en derivadas parciales.
Aplicaciones.
Acceda a la bibliografía que el profesorado de la asignatura ha solicitado a la Biblioteca.