Course code: 250001 | Subject title: GREEN LOGISTICS FOR SMART CITIES | ||||
Credits: 6 | Type of subject: Optative | Year: 4 | Period: 2º S | ||
Department: Estadística, Informática y Matemáticas | |||||
Lecturers: | |||||
LERA LOPEZ, FERNANDO [Mentoring ] | FAULIN FAJARDO, FCO. JAVIER (Resp) [Mentoring ] | ||||
SERRANO HERNANDEZ, ADRIAN [Mentoring ] |
This subject has the following basic contents: 1) An introduction to Logistics and Transportation 2) A detailed study of sustainability issues in mobility in smart cities. 3) Decision-making in urban mobility to goods delivery considering environmental impacts 4) Implications of sustainable transportation to the daily management of a smart city.
CG1 - Ability to write and develop projects in the field of industrial engineering, for the purpose of construction, renovation, repair, maintenance, demolition, manufacture, installation, structures assembly or operation, mechanical equipment, electrical and electronic installations, plants and industrial plants and manufacturing and automation processes.
CG4 - Ability to solve problems with initiative, decision-making, creativity, critical reasoning. Ability to communicate and transmit knowledge, skills and skills in the field of Industrial Engineering.
CG5 - Knowledge to perform measurements, calculations, valuations, appraisals, studies, reports, work plans and the like.
CG7 - Ability to analyze and assess the social and environmental impact of technical solutions.
CG9 - Capacity of organization and planning in the scope of the company, and other institutions and organizations.
CG10 - Ability to work in a multilingual and multidisciplinary environment
CFB1 - Possibility of solving mathematical problems that may arise in engineering. Ability to apply knowledge about: linear algebra; geometry; differential geometry; differential and integral calculus; differential equations and partial derivatives; numerical methods; numerical algorithm; statistics and optimization
CFB6 - Possession of the adequate knowledge of the company concept, institutional and legal framework of the company. Companies organization and management.
CC9 - Basic knowledge of production and manufacturing systems.
CC10 - Basic knowledge of environmental technologies and sustainability and know how to apply them.
CC11 ¿ Possession of applied knowledge of business organization.
R03. Theoretical background for the decision-making.
R12. Tactical and strategic decisions related to the production/operations area.
R13. Basic knowledge of the strategic and operational problems of logistics and transport management.
R17. Use of computers software to calculate transportation routes.
R19. Basic knowledge of the smart cities design
R20. Basic knowledge of logistics and transportation from the economic and environmental points of view.
R24. Basic knowledge of the urban distribution of goods and merchandises, and their environmental implication
R25. Basic knowledge of sustainability strategies in waste management.
R28. Basic knowledge of the use of bikes and electric vehicles in urban logistics.
Methodology-Activity | Class hours in the virtual campus | Non class hours in the virtual campus |
Reading and documents study | 25 | |
Debates and group tutoring | 10 | |
Individual study | 30 | |
Objective assessment tests | 2 | |
Individual tutoring | 3 | |
Assignments and study cases | 20 | 60 |
TOTAL | 60 | 90 |
Learning outcome |
Assessment activity |
Weight (%) | It allows test resit |
Minimum required grade |
---|---|---|---|---|
All | Course feedback | 20% | NO | NO |
All | Periodic assignments | 30% | NO | NO |
All | Cases study analysis | 50% | YES | NO |
The subject evaluation will be made taking into account the following criteria:
1.-Course feedback (20%): The active participation of the students in the subject will be highly considered. The students¿ interventions will be counted in the forums / blogs of the subject, apart from resolution of objective tests.
2.- Development of periodic assignments (30%): This type of tasks seeks to measure the process of knowledge acquisition in the subject, taking into account the point of departure of each student, and their progress.
3.- Case study developments (50%): The application of quantitative techniques to cases of real companies allows to show the real knowledge of the subject by the student. Each student will be asked to solve at least one practical case and will count for their realization of the teaching assistant's help. The resolution of these practical cases are mandatory for passing of the subject.
PART I: Introduction to Logistics and Transportation.
Topic 1: Introduction to Logistics and Supply Chain Management. Strategy and Planning.
Topic 2: Transport Fundamentals and Transport Decisions.
Topic 3: Decision Making in Logistics and Transport. Main computational algorithms to decision makings: routes optimization, supply chain management optimization, and facilities location decisions.
PART II: Green Logistics and Sustainable Transport in Smart Cities
Topic 4: Environmental sustainability in smart cities: An introduction.
Topic 5: Assessing the external impact of freight transport. Evaluating and internalizing the environmental costs of Logistics.
Topic 6: Urban distribution and smart cities
Topic 7: Vehicle routing optimization under environmental objectives. Use of electric vehicles, bikes, and tricycles for the goods delivery.
Topic 8: Increasing fuel efficiency in the road freight sector with the purpose of sustainability. Alternative fuels and freight vehicles: status, costs and benefits, and growth.
Topic 9: Sustainability strategies for city logistics. Reverse logistics for the management of waste.
Topic 10: E-business, e-logistics, and the environment. Advanced themes in green logistics: distributions by drones, 3D printing, and peak freight.
Access the bibliography that your professor has requested from the Library.
a) Bibliografía básica:
1) Faulin, J., Grasman, S., Juan, A., Hirsch, P (2019): Sustainable Transportation and Smart Logistics: Decision Making Methods and Solutions. Elsevier. Cambridge. MA. USA
2) McKinnon, A., Browne, M., Piecyk, M., Whiteing, A. (2015): Green Logistics. Improving the Environmental Sustainability of Logistics. Kogan Page Limited. London. UK.
b) Bibliografía complementaria:
1) Ballou, R.H. (2004): Business Logistics. Supply Chain Management. Prentice Hall. NJ.
2) Coyle, J.J., Novak, R.A., Gibson, B., and Bardi, E.J. (2011): Transportation: A Supply Chain Perspective. South Western. Cencage Learning. Mason, OH
3) Fahimnia, B., Bell, M.G.H., Hensher, D.A., Sarkis, J. (2015): Green Logistics and Transportation. A Sustainable Supply Chain Perspective. Springer. New York. NY.
4) Faulin, J., Juan, A., Grasman, S. and Fry, M.J. (2013): Decision Making in Service Industries: A Practical Approach. CRC Press. Taylor and Francis Group. Boca Raton. FL.
5) Psaraftis, H.N.(ed) (2016): Green Transportation Logistics. The Quest for Win-Win Solutions. Springer.London. UK.
Software
LINDO- LINGO (www.lindo.com ),
MATLAB (http://es.mathworks.com/products/matlab/?requestedDomain=www.mathworks.com/ )
Microsoft Excel (www.microsoft.com )
This subject will be completely taught on line by Mi Aulario (https://miaulario.unavarra.es/) platform