Procesos metabólicos fermentativos I

 

1.- Concepto de fermentación

La palabra «fermentación» es confusa en Microbiología porque con ella se hace referencia a cuatro tipos de procesos diferentes: el metabolismo microbiano en ausencia de oxígeno, la producción de metabolitos secundarios, la modificación de compuestos químicos por microorganismos en crecimiento y el crecimiento bacteriano en sí cuando el interés del cultivo es la producción de biomasa.

El sentido en que vamos a utilizarla en la clase de hoy es el primero: fermentación es el proceso por el que las células pueden obtener energía sin llevar a cabo un proceso de fosforilación oxidativa. Esto es: en la fermentación, la energía se obtiene mediante un proceso químico de fosforilación a nivel de substrato sin que se produzca una variación neta del poder reductor de la célula.

Los primeros estudios científicos serios sobre procesos de fermentación se llevaron a cabo por Pasteur en el análisis de los procesos de producción y alteración del alcohol durante la fabricación del vino.

Los procesos de fermentación son universales; esto es: se encuentran en todo tipo de organismos y, por consiguiente, probablemente represente una de las formas más antiguas de conservación de la energía.

1.1.- Diferencias entre fermentación y respiración: en los procesos de fermentación la energía química también deriva de la oxidación de compuestos reducidos. En cualquier proceso de oxidación se produce una transferencia de electrones desde el compuesto reducido que se oxida hasta el compuesto oxidado que se reduce, y en esa transferencia de electrones se produce la liberación de energía. En los procesos oxidativos el aceptor final de los electrones de la oxidación es el oxígeno o, de una manera más general, cualquier compuesto inorgánico oxidado. Sin embargo, en los procesos fermentativos, la transferencia de electrones se produce hasta llegar a un aceptor final que es un compuesto orgánico oxidado. Por consiguiente, en un proceso de fermentación tanto el donador de electrones como el aceptor son compuestos orgánicos, mientras que en un proceso de respiración el donador de los electrones es orgánico y el aceptor inorgánico.

Otra manera de plantear el mismo proceso es considerar que en un proceso de respiración el aceptor final de electrones es siempre externo mientras que en un proceso de fermentación el aceptor final es interno.

La respiración es mucho más efectiva energéticamente que la fermentación porque en aquélla la oxidación del compuesto orgánico es más completa que en esta y, como resultado de ello, se liberan 688 kcal/mol (DGo) en la respiración de glucosa y sólo 58 kcal/mol en la fermentación. (Estos valores hay que considerarlos a la luz de la necesidad de 7.3 kcal/mol para la síntesis de ATP).

Las rutas fermentativas son anaerobias porque no requieren oxígeno como aceptor final de los electrones. Esto no quiere decir que en ausencia de oxígeno sólo se pueda producir fermentación: el aceptor final de los electrones puede ser un compuesto inorgánico oxidado que los reciba al final de la cadena respiratoria produciéndose un proceso de fosforilación oxidativa en ausencia de oxígeno. En estos procesos decimos que los microorganismos son capaces de respirar otras moléculas diferentes al oxigeno como son los nitratos (NO3--) los sulfatos (SO4=).

2.- Rutas fermentativas para la utilización del piruvato

En la oxidación de un mol de glucosa a piruvato se producen en total 2 moles de ATP como rendimiento neto (se producen 4 moles de ATP y se consumen dos) y se genera también un mol de NADH+H+. Cuando se produce la entrada en el ciclo de Krebs del piruvato se va a generar una gran cantidad de NADH+H+ que se reoxida principalmente mediante la fosforilación oxidativa.

Cuando una célula carece de cadena respiratoria, el NADH+H+ no puede reoxidarse a NAD+ y, por consiguiente, no se puede regenerar el agente aceptor de hidrógeno necesario para las primeras fases de la glicolisis. Los procesos fermentativos reducen el piruvato regenerando el NAD+ necesario para los procesos metabólicos iniciales del catabolismo de la glucosa.

Diferentes tipos de bacterias reducen el piruvato de maneras diversas dando lugar a distintos procesos de fermentación que se conocen por sus productos finales.

2.1.- Fermentación etanólica o alcohólica: el piruvato se reduce para formar etanol y CO2:

Glucosa + 2 ADP + 2 Pi ® 2 etanol + 2 CO2 + 2 ATP

este es el proceso de fermentación que lleva a cabo Saccharomyces cerevisiae y algunas (pocas) bacterias.

Su importancia industrial es evidente: la fermentación alcohólica produce el alcohol presente en las bebidas fermentadas (vino cerveza, etc.) y el CO2 que se libera en esta fermentación es el causante del esponjamiento de la masa de pan durante su fermentación. En este último caso el proceso de cocción posterior durante la fabricación permite eliminar todo el alcohol de manera que no queda presente en el producto final.

2.2.- Fermentación homoláctica: se denomina así la fermentación cuyo único producto final es el ácido láctico. Su ecuación global es:

Glucosa + 2 ADP + 2 Pi ® 2 ácido láctico + 2 ATP

Estas bacterias producen el piruvato por catabolismo de la glucosa siguiendo la ruta de Embden-Meyerhof (vía glucolítica clásica).

Es un proceso de fermentación presente en muchas bacterias del grupo láctico: Streptococcus (grupo de enterococos), Pediococcus y varios grupos de Lactobacillus.

Su importancia industrial estriba en la bajada del pH de los productos donde se encuentran estas bacterias: esta bajada del pH como consecuencia de la liberación de ácido láctico es suficiente para producir unos cambios químicos en el producto (precipitación de proteínas durante el cuajado de la leche), cambios microbiológico (protección del deterioro microbiano de alimentos como consecuencia de la eliminación de la flora competidora) y organolépticos (los ácidos orgánicos de cadena corta, y entre ellos el ácido láctico tienen características de producción de sabor) que hacen de esta fermentación un proceso muy relevante en la producción de alimentos.

La fermentación homoláctica es la causante de las agujetas producidas en los músculos después de un esfuerzo intenso en el que la cantidad de oxígeno aportada a las fibras musculares no es suficiente para asegurar toda la reoxidación del NADH+H+. Las agujetas se producen por los depósitos de ácido láctico entre las fibras musculares. Asimismo, la fermentación homoláctica es responsable de la alteración del esmalte dental en la boca causado por bacterias láctica flora habitual.

2.3.- Fermentación heteroláctica: denominada así porque su producto final no es exclusivamente ácido láctico. El proceso tiene un rendimiento menor al de la fermentación homoláctica como se desprende de la producción de sólo un mol de ATP por mol de glucosa fermentada. La obtención del piruvato en estas bacterias se logra mediante el catabolismo de la glucosa por la ruta de las pentosas.

La reacción global es:

Glucosa + ADP + Pi ® Ac. láctico + etanol + CO2 + ATP

Este proceso lo llevan a cabo bacterias del grupo láctico pertenecientes a los géneros Leuconostoc y Lactobacillus.

Industrialmente el proceso es relevante en la producción de alimentos fermentados (por ejemplo el sauerkraut). Otra bacteria productora de este tipo de fermentación es Lactobacillus acidophilus que facilita el metabolismo de la leche.

2.4.- Fermentación del ácido propiónico: las bacterias que presentan este tipo de fermentación se pueden utilizar tanto azúcares como lactato como puntos de partida para el proceso. La ruta es un proceso complejo en el que se genera acetato, CO2 y ácido propiónico como productos finales.

Esta ruta fermentativa la presentan las bacterias del tipo Propionibacterium y otras anaerobias estrictas presentes en el rumen de herbívoros donde llevan a cabo una fermentación secundaria de los productos de las fermentaciones lácticas primarias.

Industrialmente Propionibacterium es importante en la fermentación del queso para producir el tipo suizo: la fermentación propiónica utiliza en este caso el lactato producido en las fermentaciones lácticas primarias produciendo CO2 responsable de los «ojos» del queso suizo y acumulación de ácidos orgánicos de cadena corta responsables de características organolépticas.

2.5.- Fermentación ácido-mixta: La fermentación ácido mixta produce ácido acético, etanol, H2 ,CO2 y proporciones diferentes de ácido láctico o propiónico (fórmico) según las especies. Es un tipo de fermentación que llevan a cabo las enterobacterias. En esta ruta de fermentación se produce ATP además de la reoxidación del NADH+H+.

La producción de formiato o CO2 + H2 depende de la presencia en la bacteria de una enzima denominada formiato-liasa responsable del paso. No todas las bacterias la tienen y su actividad es detectable por la producción de grandes cantidades de gas (el H2 es insoluble) como consecuencia de la fermentación del azúcar.

2.6.- Fermentación butanodiólica: es una variante de la anterior presente en algunas enterobacterias como Klebsiella, Serratia y Erwinia, especie en la que se da una fermentación ácida mixta butanodiólica. En esta ruta se desprende CO2 y se logra como producto final el 2.3-butanodiol. Como paso intermedio de la ruta se produce acetoína que puede servir para la identificación de las bacterias que presentan esta ruta mediante la reacción de Voges-Proskauer que permite distinguir bacterias muy semejantes como Escherichia y Enterobacter.

2.7.- Fermentación del butanol: es un tipo de fermentación llevado a cabo por bacterias anaerobias estrictas del género Clostridium. En el curso de esta fermentación se producen compuestos orgánicos disolventes de gran importancia industrial y que, históricamente, han sido los primeros productos industriales bacterianos de importancia económica relevante durante la 1ª Guerra Mundial (trabajo de Weizmann).

3.- Rutas fermentativas de utilización de aminoácidos

En algunas bacterias del género Clostridium se producen procesos acoplados de oxidación de aminoácidos con el objeto de producción de energía. Como en estos procesos no se utiliza ningún aceptor externo de los electrones de la oxidación (el aceptor es el segundo aminoácido de la pareja) técnicamente constituyen procesos de fermentación de aminoácidos en los que se llega a la desaminación y descarboxilación de los aminoácidos que intervienen en la pareja.

El ejemplo más representativo es la desaminación y descarboxilación oxidativa de la alanina a acetato acoplada con la desaminación reductiva de la glicina en el proceso conocido como reacción de Stickland.

4.- Conclusión

Los procesos de fermentación, en sentido metabólico, son aquellos en los que se produce una oxidación de compuestos orgánicos reducidos siendo el aceptor final de electrones un compuesto orgánico interno que se reduce. En estos procesos puede producirse algún rendimiento energético; pero su principal función es la reoxidación del NADH+H+ a NAD necesario para poder iniciar los primeros pasos del catabolismo. Los diferentes procesos pueden identificarse por sus productos finales.

 

Volver