Universidad Pública de Navarra



Año Académico: 2015/2016 | Otros años:  2017/2018  |  2016/2017 
Máster Universitario en Ingeniería de Telecomunicación por la Universidad Pública de Navarra
Código: 73228 Asignatura: Simulación para la toma de decisiones
Créditos: 4.5 Tipo: Optativa Curso: 2 Periodo: 1º S
Departamento: Estadística e Investigación Operativa
Profesores
MALLOR GIMENEZ, FERMÍN FRANCISCO AZCARATE CAMIO, CRISTINA (Resp)

Partes de este texto:

 

Módulo/Materia

Módulo de Especialización en Organización de Empresas

Subir

Descriptores

Modelos de colas. Simulación: Generación artificial de aleatoriedad. Simulación de sistemas. Optimización con simulación. Aplicaciones en organización industrial. Discusión de casos reales. 

Subir

Competencias genéricas

CB7: Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio. 

CB9: Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades. 

CB10: Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.

CG4: Capacidad para el modelado matemático, cálculo y simulación en centros tecnológicos y de ingeniería de empresa, particularmente en tareas de investigación, desarrollo e innovación en todos los ámbitos relacionados con la Ingeniería de Telecomunicación y campos multidisciplinares afines.

Subir

Competencias específicas

CEO5: Diseño e interpretación de ejercicios de simulación sobre el comportamiento de la economía a través de la evaluación de inversión con el cambio pertinente en estructura de financiación y sus posibles efectos.

CEO7: Conocimiento sobre gestión de procesos, reingeniería de procesos y soportes de sistemas de información

Subir

Resultados aprendizaje

R1. Conocer los fundamentos teóricos en los que se apoya la generación artificial de aleatoriedad.

R2. Comprender los fundamentos de la simulación de eventos discretos mediante el ordenador.

R3. Tener capacidad para la representación de un proceso industrial mediante un modelo de simulación adecuado con los objetivos del estudio.

R4. Tener capacidad de implementar un modelo de simulación utilizando un programa específico de simulación, de diseñar los experimentos de simulación, de recoger los resultados y de analizarlos e interpretarlos.

R5. Conocimiento de los fundamentos en los que se basa la optimización con simulación.

 

La medición de la consecución de estos resultados se realizará a través de todas las actividades recogidas en el apartado de evaluación.

 

 

Subir

Metodología

Actividad formativa

Horas

% Presencialidad del alumno

AF1.- Clases expositivas/participativas

20

100

AF2.- Prácticas

21

100

AF3.- Actividades de aprendizaje cooperativo

4

100

AF4.- Realización de proyectos en grupo

30

0

AF5.- Estudio y trabajo autónomo del estudiante

30

0

AF6.-Tutorías y pruebas de evaluación

7.5

100

Subir

Relación actividades formativas-competencias

Competencia

Actividad formativa

 CB7

 AF2-AF3-AF4-AF6

 CB9

 AF3-AF6

 CB10

 AF3-AF4-AF5

 CG4

 AF1-AF2-AF3-AF4-AF5-AF6

 CEO5

 AF1-AF2-AF3-AF4-AF5-AF6

 CEO7

 AF1-AF2-AF3-AF4-AF5-AF6

Subir

Idiomas

 Español

Subir

Evaluación

Sistema de evaluación

% ponderación mínima

% ponderación máxima

Pruebas de duración corta para la evaluación continua

 

 

Pruebas de respuesta larga

40%

70%

Pruebas tipo test

 

 

Presentaciones orales

5%

10%

Trabajos e informes

25%

50%

Pruebas e informes de trabajo experimental

 

 

Subir

Contenidos

Tema 1: Modelos de colas.

Tema 2: Simulación: Generación artificial de aleatoriedad.

Tema 3: Simulación de sistemas.

Tema 4: Optimización con simulación.

Tema 5: Aplicaciones en organización industrial. Discusión de casos reales.

Subir

Temario

Tema 1: Modelos de colas.

  • Estructura de un modelo de colas.

  • Modelos de colas Markovianos y no Markovianos.

  • Redes de colas.

     

Tema 2: Simulación. Generación artificial de aleatoriedad.

  • Introducción a la simulación.

  • Generación artificial de aleatoriedad: números pseudoaleatorios.

  • Generación artificial de aleatoriedad: Simulación de variables aleatorias y de procesos estocásticos.

     

Tema 3: Simulación de sistemas.

  • Modelos de simulación de eventos discretos. Componentes.

  • Simulación de modelos de eventos discretos: avance del reloj.

  • Construcción de un modelo de simulación.

  • Análisis de datos de entrada.

  • Análisis de los resultados de la simulación.

  • Modelado y resolución de casos con ARENA.

     

Tema 4: Optimización con simulación.

  • Formulación de problemas de optimización.

  • Interacción entre optimización y simulación.

  • Programa de optimización OptQuest con ARENA

Tema 5: Aplicaciones. Discusión de casos reales.

  • Fases en el desarrollo de un estudio de simulación.

  • Aplicaciones de la simulación para la toma de decisiones en el contexto de la organización industrial.

  • Discusión de casos reales.

  • Presentación y discusión de los estudios de simulación realizados por los estudiantes.

Subir

Bibliografía

Acceda a la bibliografía que su profesor ha solicitado a la Biblioteca.


KELTON, W.D.; SADOWSKY, R.P.; ZUPICK, N.B. (2015): Simulation with Arena. 6th Ed. McGraw-Hill.

LAW, A.M. (2015): Simulation modeling and analysis. 5ª Ed. McGraw-Hill.

ROSSETTI, M.D. (2010): Simulation modeling and Arena. John Wiley & Sons.

RUSSELL, R.S.; TAYLOR, B.W. (2006): Operations Management. Wiley. 5ª Ed.

   

Revistas científicas: Journal of Simulation, Proceedings of the Winter simulation conference, Optimization and Engineering, Interfaces, Engineering Optimization, European Journal of Industrial Engineering, European Journal of Operational Research, Computers and Industrial Engineering, etc.

 

Subir

Lugar de impartición

Aulario (aula y aula de informática)

Subir