Universidad Pública de Navarra



Año Académico: 2013/2014 | Otros años:  2012/2013 
Máster Universitario en Ingeniería de Materiales y Fabricación por la Universidad Pública de Navarra
Código: 71274 Asignatura: Diseño, verificación y ensayo de máquina-herramienta
Créditos: 3 Tipo: Optativa Curso: 1 Periodo: 2º S
Departamento: Ingeniería Mecánica, Energética y de Materiales
Profesorado:
LURI IRIGOYEN, RODRIGO   [Tutorías ] ESTREMERA CARRERA, VANESA   [Tutorías ]

Partes de este texto:

 

Descripción/Contenidos

Introducción al diseño de máquinas: diseño en ingeniería, métodos teóricos y experimentales.

Diseño de maquinas frente a cargas estáticas: análisis de tensiones y deformaciones, teorías de fallo

estático y fractura estática. Fatiga: introducción al fenómeno de la fatiga y diseño de máquinas frente

al fenómeno de la fatiga. Dinámica: sistemas de 1, 2 y n grados de libertad, frecuencias naturales,

resonancias y anti-resonacias, efectos de la amplificación dinámica y amortiguamiento. Cálculo

de elementos de máquinas: cálculo de engranajes, cálculo de ejes, cálculo de resortes, cálculo de

rodamientos y cojinetes, cálculo de correas y poleas. Método de los elementos finitos en el cálculo de

elementos de máquinas: cálculos estáticos, dinámicos y no lineales. Técnicas experimentales de ensayo

de máquinas: análisis experimental de tensiones y deformaciones (extensometría), análisis experimental

de vibraciones (acelerómetros), análisis de fuerzas mediante células de carga y ensayos típicos. Técnicas

de verificación: metrología de la máquina-herramienta, ensayos ballbar, e interferometría láser.

Normativa de la máquina-herramienta.


Subir

Descriptores

Cálculo de elementos de Maquina-Herramienta, Verificación de Maquina-Herramienta, Ensayos de Maquinas

Subir

Competencias genéricas

CB6 - Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.

CB7 - Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.

CB8 - Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios

CB9 - Que los estudiantes sepan comunicar sus conclusiones ¿y los conocimientos y razones últimas que las sustentan¿ a públicos especializados y no especializados de un modo claro y sin ambigüedades

CB10 - Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.

CG1 - Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios, habitualmente multidisciplinares, relacionados con la caracterización, comprensión, diagnóstico, elección de materiales y diseño y gestión de los procesos de fabricación y tratamiento correspondientes.

CG2 - Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades económicas, medioambientales, sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.

CG3 - Que los estudiantes sepan comunicar sus conclusiones (y los conocimientos y razones últimas que las sustentan) tanto oralmente como por escrito, a públicos especializados y no especializados en materiales y procesos de fabricación, de un modo claro y sin ambigüedades, adaptándose siempre a las prácticas y formas de expresión de cada entorno concreto.

CG4 - Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando, una vez finalizado el máster, de un modo que habrá de ser en gran medida autodirigido o autónomo.

CG5 - Que los estudiantes sean capaces de identificar y relacionarse con los foros nacionales e internacionales, centros de investigación, científicos y profesionales, de las áreas de materiales y de procesos de fabricación, especialmente con aquellos grupos que detentan el liderazgo de sus especialidades a nivel nacional e internacional.

CG6 - Que los estudiantes adquieran la formación y destrezas propias de un investigador científico, particularmente su espíritu crítico, su capacidad de identificación, análisis y contraste de las fuentes solventes de información, el método y el rigor a la hora de plantear propuestas, proponer modelos, realizar experimentos y analizar resultados, así como la precisión y la moderación a la hora de emitir juicios.

Subir

Competencias específicas

CE2 - Que los estudiantes sean capaces de conocer los fundamentos tecnológicos y científicos relacionados con la Ingeniería de Fabricación.

CE3 - Que los estudiantes conozcan y sepan aplicar modelos teóricos y herramientas físicas y matemáticas (incluyendo simulaciones numéricas) al diagnóstico y resolución de problemas, tanto de materiales como de procesos de fabricación.

CE5 - Que los estudiantes conozcan y sepan aplicar técnicas experimentales y diseños de experimentos válidos y adecuados para el estudio, diseño, análisis, optimización de procesos de fabricación.

CE6 - Que los estudiantes interioricen la naturaleza multidisciplinar de la Ingeniería de Fabricación y de la Ciencia de Materiales, siendo conscientes de los distintos conocimientos y tecnologías necesarios para trabajar con éxito en dichos campos.

CE7 - Que los estudiantes no pierdan de vista los aspectos relacionados con gestión, calidad y logística de las decisiones que puedan tomar como resultado de sus análisis de un problema.

CE8 - Que los estudiantes entiendan y sepan evaluar el impacto de sus diagnósticos y decisiones en los contextos económico, ambiental y social.


Subir

Metodología

Metodologías Docentes

Clases Magistrales

Clases Prácticas

Trabajo en Grupo

Trabajo Autónomo

Tutorías

 

Actividades Formativas

ACTIVIDAD FORMATIVA

HORAS

PRESENCIALIDAD

Clases expositivas/participativas

13.5

100%

Prácticas

9

100%

Actividades de aprendizaje cooperativo y realización de proyectos en grupo

30

0%

Estudio y trabajo autónomo del estudiante

18.8

0%

Tutorías y pruebas de evaluación

3.8

100%

 

Subir

Idiomas

CASTELLANO

Subir

Evaluación

SISTEMA DE EVALUACIÓN

PONDERACIÓN MÍNIMA

PONDERACIÓN MÁXIMA

Pruebas globales de evaluación de conocimiento (examen tipo test, examen final, etc.)

10.0 %

60.0 %

Pruebas de seguimiento continuo (trabajos propuestos, guiones de prácticas, etc.)

10.0 %

60.0 %

Trabajos y presentaciones orales (individuales y/o en grupo)

10.0 %

60.0 %

Subir

Temario

 

Tema 1.   Introducción al diseño de máquinas

-  Diseño en ingeniería

-  Métodos teóricos y experimentales

 

Tema 2.   Diseño de maquinas frente a cargas estáticas

-  Análisis de tensiones y deformaciones

-  Teorías de fallo estático

-  Fractura estática.

 

Tema 3.   Fatiga

-  Introducción al fenómeno de la fatiga

-  Diseño de máquinas frente al fenómeno de la fatiga.

 

Tema 4.   Dinámica

-  Sistemas de 1 grado de libertad

-  Frecuencias naturales, efectos de la amplificación dinámica y amortiguamiento.

-  Sistemas de 2 y n grados de libertad

-  Resonancias y anti-resonacias.

 

Tema 5.   Cálculo de elementos de máquinas

-  Cálculo de engranajes

-  Cálculo de ejes

-  Cálculo de resortes

-  Cálculo de rodamientos y cojinetes

-  Cálculo de correas y poleas.

 

Tema 6.   Método de los elementos finitos en el cálculo de elementos de máquinas

-  Cálculos estáticos

-  Cálculos dinámicos

-  Cálculos no lineales

 

Tema 7.   Técnicas experimentales de ensayo de máquinas

-  Análisis experimental de tensiones y deformaciones (extensometría)

-  Análisis experimental de vibraciones (acelerómetros)

-  Análisis de fuerzas mediante células de carga

-  Ensayos típicos de Maquina-Herramienta

 

Tema 8.   Técnicas de verificación

-  Metrología de la máquina-herramienta

-  Ensayo ballbar

-  Ensayo de Interferometría láser.

 

Tema 9.            Normativa de la maquina-herramienta

Subir

Bibliografía

Acceda a la bibliografía que el profesorado de la asignatura ha solicitado a la Biblioteca.


Standard Handbook of Machine Design, J. E. Shigley, Ed. McGraw-Hill

Mechanical Engineering Design, J. E. Shigley, Ed. McGraw-Hill

Diseño de Maquinaria, R. L. Norton, Ed. McGraw-Hill

Análisis de Fatiga en Maquinas, R. Avilés, Ed Thomson

Fabricación con Maquinas Herramientas, W. Charchut, Ed Urmo (Parte 1 y 2)

Teoría de estructuras Estructuras de barras y sólidos tridimensionales, J. Zurita, Ed Universidad Pública de Navarra.

Alrededor de las máquinas-herramienta, H. Gerling, Ed Reverté S.A.

Subir