Universidad Pública de Navarra



Año Académico: 2014/2015 | Otros años:  2017/2018  |  2016/2017  |  2015/2016  |  2013/2014 
Máster Universitario en Tecnología y Calidad en las Industrias Agroalimentarias
Código: 71735 Asignatura: Microbiología Predictiva
Créditos: 3 Tipo: Optativa Curso: 1 Periodo: 1º C
Departamento: Tecnología de Alimentos
Profesores
CANTALEJO DIEZ, MARIA JESUS

Partes de este texto:

 

Descriptores

Microbiología predictiva, seguridad alimentaria, modelos predictivos, vida útil de los alimentos

Subir

Competencias genéricas

CG5 Capacidad de análisis y síntesis,

CG8 Capacidad de gestión de la información,

Subir

Competencias específicas

CE3.1 Saber identificar los riesgos que presentan los alimentos,

CE3.2 Conocer las herramientas de evaluación de la seguridad alimentaria,

CE3.4 Ser capaz de desarrollar tareas de investigación en inocuidad y seguridad alimentaria

Subir

Metodología

Metodología - Actividad

Horas Presenciales

Horas no presenciales

A-1 Clases teóricas

5

 

A-2 Prácticas

15

25

A-3 Debates, puestas en común, tutoría grupos

4

 

A-4 Elaboración de trabajo

6

15

A-5 Lecturas de material

 

5

A-6 Estudio individual

 

 

A-7 Exámenes, pruebas de evaluación

 

 

A-8 Tutorías individuales

 

 

Total

 

 

Total

75

Subir

Relación actividades formativas-competencias

CG-5  Capacidad de análisis y síntesis

A-2, A-3, A-4

CG-8 Capacidad de gestión de la información

A-2, A-4

CE-3.1 Saber identificar los riesgos que presentan los alimentos

A-1, A-2, A-3, A-4

 

CE-3.2 Conocer las herramientas de evaluación de la seguridad alimentaria

A-1, A-2, A-3, A-4

CE-3.4 Ser capaz de desarrollar tareas de investigación en inocuidad y seguridad alimentaria

A-3, A-4

Subir

Idiomas

Español e inglés (Parte de la bibliografía recomendada y la documentación utilizada se dan en inglés)

Subir

Evaluación

Aspecto

Criterios

Instrumento

Peso

Participación

 

Evaluación competencias:

CG5; CE3.1.; CE3.2.

 

 

Participación en aula

 

 

Registro del Profesor

30

Conceptos de la materia

 

Evaluación competencias:

CG5, CG8, CE3.1.; CE3.2.; CE3.4.

Identificación de conceptos claves y comprensión de conocimientos teóricos y prácticos de la materia.

 

Calidad crítica del comentario en los debates.

 

Entrega de las actividades propuestas en el aula

 

 

 

 

Registro del profesor

 

 

20

Realización de Trabajos

 

Evaluación competencias:

CG5, CG8 ; CE3.1.; CE3.2.; CE3.4.

Capacidad de análisis y síntesis.

 

 

 

 

 

 

 

 

 

Aplicación de los conocimientos la realización de los supuestos prácticos.

 

 

 

Trabajo escrito libre de carácter personal que aplique, analice, desarrolle o recoja una o más de las partes de la asignatura y lo contextualice en la experiencia profesional concreta.  

 

 

Entrega y evaluación de propuesta de resolución de supuestos prácticos

 

 

50

Subir

Contenidos


 

En el curso se da una visión de lo que es la microbiología predictiva y su uso como herramienta de trabajo para predecir la vida útil de los alimentos. Se aprende a cuantificar la probabilidad de riesgo al ingerir un alimento contaminado a través de distintos modelos matemáticos.

Subir

Temario

Introducción a la Microbiología Predictiva

Modelos Primarios. Modelos matemáticos para describir el crecimiento y la inactivación bacteriana.

Modelos Secundarios. Principales modelos empleados para describir la dependencia de los parámetros de crecimiento de las variables ambientales. Concepto de la región de interpolación.

Modelos estocásticos y aplicación al Análisis de Peligros. Cuantificación de la probabilidad de riesgo. Simulación del crecimiento bacteriano como un proceso estocástico. Estudio de las distribuciones finales del tiempo necesario para alcanzar una concentración determinada y de la concentración microbiana en un momento determinado.

Modelización de la fase de latencia

Modelización de la dependencia de la tasa de inactivación térmica de la temperatura (Valor D y Z)

Pruebas estadísticas para evaluar y comparar modelos.  Pruebas t y F. Estudio de la significancia de los parámetros del modelo y el efecto de las variables ambientales. Aplicación para comparar la superficies de respuesta de dos bacterias en las mismas condiciones de crecimiento

Región de interpolación.  Descripción de la región de interpolación y extrapolaciones. Cálculo manual de la región de interpolación y usando la herramienta DMFit

Validación de modelos. Fuentes del error del modelo y descripción de los indicadores de exactitud/discrepancia y sesgo para estimar el error

Valor Z  para crecimiento con múltiples factores ambientales. Valor z para crecimiento como la inversa de la derivada parcial del modelo secundario con respecto al factor ambiental. Aplicación para estimar cuanto se debe modificar cada factor ambiental para causar el mismo efecto en el parámetro de crecimiento.

 Predicción (crecimiento) en condiciones fluctuantes. Uso de ecuaciones diferenciales para la predicción del crecimiento en condiciones fluctuantes. Resolución de la ecuación diferencial con el método de Runga Kutta

Modelos estocásticos y aplicación al Análisis de Peligros. Cuantificación de la probabilidad de riesgo. Simulación del crecimiento bacteriano como un proceso estocástico. Estudio de las distribuciones finales del tiempo necesario para alcanzar una concentración determinada y de la concentración microbiana en un momento determinado.

 

Subir

Bibliografía

Acceda a la bibliografía que su profesor ha solicitado a la Biblioteca.


Programas informáticos: DM Fit, Growth Predictor y PMP ComBase

 

 

Subir

Lugar de impartición

Sala de Ordenadores del Departamento de Tecnología de Alimentos. Edificio Los Olivos

Subir