Public University of Navarre



Castellano | Academic year: 2017/2018 | Previous academic years:  2016/2017 
Master’s degree in Industrial Engineering
Course code: 73290 Subject title: Automation and process control
Credits: 4.5 Type of subject: Mandatory Year: 1 Period: 1º S
Department: Automatics and Computing
Lecturers
ELSO TORRALBA, JORGE (Resp)

Partes de este texto:

 

Module/Subject matter

Industrial Technologies Module / M1 Advanced Industrial Technologies

Up

Descriptors

Analysis and design of control systems in the state space. Analysis and design of digital control systems.

Up

General proficiencies

Competencias básicas:

 

CB6: Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.

CB7: Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.

 

CB9: Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades.

 

CB10: Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.

 

Competencias generales:

 

CG1: Tener conocimientos adecuados de los aspectos científicos y tecnológicos de: métodos matemáticos, analíticos y numéricos en la ingeniería, ingeniería eléctrica, ingeniería energética, ingeniería química, ingeniería mecánica, mecánica de medios continuos, electrónica industrial, automática, fabricación, materiales, métodos cuantitativos de gestión, informática industrial, urbanismo, infraestructuras, etc.

 

CG4: Realizar investigación, desarrollo e innovación en productos, procesos y métodos.

 

CG8: Aplicar los conocimientos adquiridos y resolver problemas en entornos nuevos o poco conocidos dentro de contextos más amplios y multidisciplinares

Up

Specific proficiencies

Competencias del Módulo de Tecnologías Industriales (CMT):

CMT8:Capacidad para diseñar y proyectar sistemas de producción automatizados y control avanzado de procesos.

Up

Learning outcomes

  1. (R1) Knowing how to create mathematical models of contiuous, discrete and hybrid systems.
  2. (R2) Being capable of analyzing and designing digital control systems.
  3. (R3) Knowing the classical PID controller and its tunning methods.
  4. (R4) Knowing how use a real time control system to implement digital PID control.

Up

Methodology

Methodology - Activity Class Hours Self-Study
A-1 Classroom lectures 30  
A-2 Laboratory sessions 10  
A-3Cooperative learning    
A-4 Teamwork    
A-5 Self-study   58
A-6 Office hours and exams 14  
Total 54 58

Up

Relationship between formative activities and proficiencies

Competencia Actividad formativa
CG1, CG2, CG8, CMT8 A-1
CG1, CG2, CG8, CMT8 A-2
CG1, CG2, CMT8 A-5
CG1, CG2, CMT8 A-6
CG1, CMT8 A-7
CG1, CG8, CMT8 A-8

Up

Languages

Spanish and English

Up

Evaluation

Learning outcome
Evaluation method
Weight(%) Retake Minimum grade
R1  Part I: Short-answer exam  30 Yes 4
R1, R2 Part II: Short-answer exam  30 Yes 4
R2, R3 PArt III: Long-answer exam  25 Yes 4
R4  Laboratory exam  15    

 

The final grade will be a weighted mean of the marks obtained in the exams corresponding to each part of the contents and the laboratory exam. The exams will take place along the course. The weighting is detailed in the above table. To pass the subject, the aforementioned mean must be equal to or greater than five. In addition, a minimum grade of four is required in parts I, II and III. If the latter requirement is not met and the weighted mean is equal to or greater than 5, the final grade will be 4.9.

 

There will be a retake exam in which the student will have the opportunity to improve one or more of the marks obtained in the three theory exams. If the new grades are higher than those previously obtained, the mean will be recalculated. There will not be a retake for the laboratory exam.

Up

Contents

Mathematical transforms.Digital systems control. Digital controllers design. PID control. Real time control.

Up

Agenda

Unit I: Analog control systems

Theory

Lecture 1. State space analysis and design.

- States, inputs and outputs. State equations.

- Simulation of systems. Linearization.

- Realizations. Canonical forms.

- Stability. Relation between the state space and the transfer function.

- Controlability. Pole placement. The regulation problem.

- Observability. Observer design. The separation principle.

Laboratory

Session 1. State space representation of dynamical systems.

Session 2. Controller design in the state space.

 

Unit II: Digital systems analysis

Theory

Lecture 3. Introduction to digital control.

- Analog and digital signals.

- Sampling and reconstruction.

- Continuous, discrete and hybrid systems.

- Discretized systems.

Lecture 4. Representation of discrete and discretized systems

- Z transform.

- Discrete systems representation with transfer functions.

- Discretized systems representation. Sampled block diagrams.

Lecture 5. Analysis of discretized systems.

- Stability.

- Steady state.

- Transient response of discretized systems.

Laboratory

Session 3. Simulation of discrete and hybrid systems. Stability of digital control systems.

 

Unit III: Design of digital control systems

Theory

Lecture 6. Digital controller design

- PID control

- Analog design and discretization

- Design in the Z plane

Laboratory

Session 4. Digital controller design based on transfer function models and simulation of the control system.

Session 5. Digital controller design for a laboratory model and implementation on a real time control system.

Up

Bibliography

Acceda a la bibliografía que su profesor ha solicitado a la Biblioteca.


Textbooks

Class notes

G. F. Franklin, J. D. Powell and A. Emani-Naeini, Feedback Control of Dynamic Systems, Prentice-Hall.

N. S. Nise, Control Systems Engineering, Wiley

K. J. Aström, B. Wittenmark, Computer controlled Systems, Prentice Hall.

 

Advanced bibliography

F. Golnaraghi and B. C. Kuo. Automatic Control Systems, Wiley.

K. Ogata, Modern Control Engineering, Prentice-Hall.

B.C. Kuo, Digital Control Systems, Oxford University Press.

R.Isermann, Digital Control Systems, Vol. I: Fundamentals and Deterministic Control, Springer -Verlag.

 

Apart from the recommended bibliography for the subject itself, students might find useful the books by Franklin, Nise, Kuo and Ogata to review basic concepts of control theory that are used throughout the course, such as transfer functions, time response, root locus, stability, frequency response and its representation inthe Bode diagram, Fourier series and transforms, etc.

Up

Location

Classrooms building.

Up