Public University of Navarre



Castellano | Academic year: 2016/2017
Master's degree in Industrial Engineering at the Universidad Pública de Navarra
Course code: 73290 Subject title: Automation and process control
Credits: 4.5 Type of subject: Mandatory Year: 1 Period: 1º S
Department: Automatics and Computing
Lecturers:
ELSO TORRALBA, JORGE   [Mentoring ]

Partes de este texto:

 

Module/Subject matter

Industrial Technologies Module / M1 Advanced Industrial Technologies

Up

Contents

Mathematical transforms.Digital systems control. Digital controllers design. PID control. Real time control.

Up

Descriptors

Analysis and design of control systems in the state space. Analysis and design of digital control systems.

Up

General proficiencies

Competencias básicas:

CB6: Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.

CB7: Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.

 

CB9: Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades.

 

CB10: Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.

 

Competencias generales:

CG1: Tener conocimientos adecuados de los aspectos científicos y tecnológicos de: métodos matemáticos, analíticos y numéricos en la ingeniería, ingeniería eléctrica, ingeniería energética, ingeniería química, ingeniería mecánica, mecánica de medios continuos, electrónica industrial, automática, fabricación, materiales, métodos cuantitativos de gestión, informática industrial, urbanismo, infraestructuras, etc.

 

CG4: Realizar investigación, desarrollo e innovación en productos, procesos y métodos.

 

CG8: Conocimiento, comprensión y capacidad para aplicar la legislación necesaria en el ejercicio de la profesión de Ingeniero Industrial.

Up

Specific proficiencies

Competencias del Módulo de Tecnologías Industriales (CMT):

CMT8:Capacidad para diseñar y proyectar sistemas de producción automatizados y control avanzado de procesos.

Up

Learning outcomes

  1. Knowing how to analyze, simulate and design system from a state space perspective.
  2. Knowing how to create mathematical models of conituous, discrete and hybrid systems.
  3. Being capable of analyzing digital control systems.
  4. Being capable of designing digital control systems.
  5. Knowing classical PID controllers and their tunning methods.
  6. Mastering a simulation and control software.
  7. Knowing how use a real time control system to implement digital PID control.

 

Up

Methodology

Methodology - Activity
Class Hours
Self-Study
A-1 Classroom lectures
 30
 
A-2 Laboratory sessions
 10
 
A-3 Debates, presentations, group work
 
 
A-4 Paper writting
 
 
A-5 Readings
 
 20
A-6 Self-study
 
 38
A-7 Exams
 8
 
A-8 Office hours
 6
 
 
 
 
Total
 54
 58

Up

Languages

Spanish and English

Up

Evaluation

Learning outcome
Evaluation method
Weight(%)
Knowing how to analyze, simulate and design system from a state space perspective.  Short-answer exam  30
Knowing how to create mathematical models of conituous, discrete and hybrid systems.
Being capable of analyzing digital control systems.
 Short-answer exam  30
Being capable of designing digital control systems.
Knowing classical PID controllers and their tunning methods.
 Long-answer exam  25
Mastering a simulation and control software.
Knowing how use a real time control system to implement digital PID control.
 Laboratory exam  15

The final grade will be a weighted mean of the marks obtained in the exams corresponding to each part of the contents and the laboratory exam. The exams will take place along the course. The weighting is detailed in the above table. To pass the subject, the aforementioned mean must be equal to or greater than five. In addition, a minimum grade of four is required in parts I, II and III. If the latter requirement is not met and the weighted mean is equal to or greater than 5, the final grade will be 4.9.

There will be a retake exam in which the student will have the opportunity to improve one or more of the marks obtained in the three theory exams. If the new grades are higher than those previously obtained, the mean will be recalculated. There will not be a retake for the laboratory exam.

Up

Agenda

Unit I: Analog control systems
Theory
Lecture 1. State space analysis and design.
- States, inputs and outputs. State equations.
- Simulation of systems. Linearization.
- Realizations. Canonical forms.
- Stability. Relation between the state space and the transfer function.
- Controlability. Pole placement. The regulation problem.
- Observability. Observer design. The separation principle.
Laboratory
Session 1. State space representation of dynamical systems.
Session 2. Controller design in the state space.
 
Unit II: Digital systems analysis
Theory
Lecture 3. Introduction to digital control.
- Analog and digital signals.
- Sampling and reconstruction.
- Continuous, discrete and hybrid systems.
- Discretized systems.
Lecture 4. Representation of discrete and discretized systems
- Z transform.
- Discrete systems representation with transfer functions.
- Discretized systems representation. Sampled block diagrams.
Lecture 5. Analysis of discretized systems.
- Stability.
- Steady state.
- Transient response of discretized systems.
Laboratory
Session 3. Simulation of discrete and hybrid systems. Stability of digital control systems.
 
Unit III: Design of digital control systems
Theory
Lecture 6. Digital controller design
- PID control
- Analog design and discretization
- Design in the Z plane
Laboratory
Session 4. Digital controller design based on transfer function models and simulation of the control system.
Session 5. Digital controller design for a laboratory model and implementation on a real time control system.

Up

Bibliography

Access the bibliography that your professor has requested from the Library.


Textbooks

Class notes

G. F. Franklin, J. D. Powell and A. Emani-Naeini, Feedback Control of Dynamic Systems, Prentice-Hall.

N. S. Nise, Control Systems Engineering, Wiley

K. J. Aström, B. Wittenmark, Computer controlled Systems, Prentice Hall.

 

Advanced bibliography

F. Golnaraghi and B. C. Kuo. Automatic Control Systems, Wiley.

K. Ogata, Modern Control Engineering, Prentice-Hall.

B.C. Kuo, Digital Control Systems, Oxford University Press.

R.Isermann, Digital Control Systems, Vol. I: Fundamentals and Deterministic Control, Springer -Verlag.

Up

Location

Classrooms building.

Up