Stability of Periodic Motions in Satellite Dynamics
Stability Theory for Hamiltonian Systems

Boris S. Bardin
Moscow Aviation Institute (Technical University)
Faculty of Applied Mathematics and Physics
Department of Theoretical Mechanics

Course of Computer Algebra and Differential Equations
Contents

1. Stability of Nonautonomous Hamiltonian Systems
 - Linear Problem of Stability
 - Nonlinear Problem of Stability

2. Constructive algorithm for the normalization of a periodic Hamiltonian
 - Construction of the map
 - Normalization of the area preserving map
Contents

1. Stability of Nonautonomous Hamiltonian Systems
 - Linear Problem of Stability
 - Nonlinear Problem of Stability

2. Constructive algorithm for the normalization of a periodic Hamiltonian
 - Construction of the map
 - Normalization of the area preserving map
Consider a system of differential equation

$$\frac{dx}{dt} = A(t)x, \quad A(t + 2\pi) = A(t)$$

(1)

Theorem. Let $X(t)$ be a fundamental matrix of solution of system (1) satisfying the following initial conditions $X(0) = E$. Then, for all $t \in \mathbb{R}$

$$X(t) = Y(t)e^{Bt}$$

where B is a constant matrix and $Y(t)$ is a 2π–periodic in t matrix.
Lyapunov-Floquet theorem

Theorem. There exists a linear 2π–periodic change of variables that transforms the 2π–periodic linear system to an autonomous linear system.

Let us perform linear transformation

$$x = X(t)e^{-Bt}y$$

where $X(t)$ is the fundamental matrix of solution of system (1) defined above.

In the new variables we have

$$\frac{dy}{dt} = By. \tag{2}$$

The stability problems for systems (1) and (2) are equivalent.
The eigenvalues ρ_i of matrix $X(2\pi)$ are called the characteristic multipliers of the system.

$$\frac{d\mathbf{x}}{dt} = \mathbf{A}(t)\mathbf{x}$$

They are also the eigenvalues of the (linear) Poincare maps. The eigenvalues λ_i of matrix \mathbf{B} are called a characteristic exponent (sometimes called a Floquet exponent). The relation

$$\rho_i = e^{2\pi \lambda_i}$$

and takes place.
Linear Hamiltonian system

Poincare – Lyapunov Theorem. The characteristic equation

\[\det(X(2\pi) - \rho) = 0 \]

for linear Hamiltonian system is a reciprocal equation.

- If linear Hamiltonian system has characteristic multiplier \(\rho_i \) then it also has the multiplier \(\rho_i^{-1} \).
- Linear periodic Hamiltonian system is stable if and only if all characteristic multipliers lie on unit circle and Jordan normal form of the matrix \(X(2\pi) \) is diagonal.
Contents

1. Stability of Nonautonomous Hamiltonian Systems
 - Linear Problem of Stability
 - Nonlinear Problem of Stability

2. Constructive algorithm for the normalization of a periodic Hamiltonian
 - Construction of the map
 - Normalization of the area preserving map

Boris Bardin
Let us consider nonlinear 2π–periodic Hamiltonian system with n degrees of freedom. By using 2π–periodic transformation its Hamiltonian can be brought into the following normal form

$$H = \omega_1 r_1 + \cdots + \omega_1 r_n + \sum_{i,j=1}^{n} a_{ij} r_i r_j + H^{(5)}(r, \varphi, t)$$

Let us introduce 'additional' pair of canonical variables r_{n+1} and $\varphi_{n+1} = t$ and consider autonomous Hamiltonian system with $n + 1$ degrees of freedom. The Hamiltonian reads

$$H^* = \omega_1 r_1 + \cdots + \omega_1 r_n + r_{n+1} + \sum_{i,j=1}^{n} a_{ij} r_i r_j + H^{(5)}(r, \varphi, \varphi_{n+1})$$
Stability for most of initial conditions

If the Hamiltonian does not satisfy the condition of nondegeneracy

$$D_{k+1} = \det \left(\frac{\partial^2 H_0^*}{\partial r^2_*} \right) \equiv 0$$ \hspace{1cm} (3)

Let us notice that the condition of isoenergetic nondegeneracy never fulfilled, i.e

$$D_{k+2} = \det \begin{bmatrix} \left(\frac{\partial^2 H_0^*}{\partial r^2_*} \right) & \left(\frac{\partial H_0^*}{\partial r_*} \right) \\ \left(\frac{\partial H_0^*}{\partial r_*} \right) & 0 \end{bmatrix} \neq 0, \Rightarrow \quad D_k = \det \left(\frac{\partial^2 H_0}{\partial r^2} \right) \neq 0$$
Arnold diffusion in resonant cases
Markeev’s Example

Let us consider the system with Hamiltonian

\[H = \omega_1 r_1 + \omega_2 r_2 - 24r_1^2 + 2r_1 r_2 + r_2^2 + H^{(1)}(r, \varphi, t), \]

where

\[H^{(1)}(r, \varphi, t) = r_2^2 \sqrt{r_1} \sin(\varphi_1 + 4\varphi_2 - Nt). \]

and resonance \(\omega_1 + 4\omega_2 = N \) takes place.

The conditions of Arnold’s theorem are fulfilled

\[D_3 = a_{12}^2 - a_{11} a_{22} = 25 \neq 0, \]

but the Hamiltonian system has the following solution

\[\varphi_1 + 4\varphi_2 - Nt = \pi \]

\[r_1(t) = \frac{1}{4} r_2(t) = r_1(0)[1 - 24r_3^2(0)t]^{2/3}. \]
Contents

1. Stability of Nonautonomous Hamiltonian Systems
 - Linear Problem of Stability
 - Nonlinear Problem of Stability

2. Constructive algorithm for the normalization of a periodic Hamiltonian
 - Construction of the map
 - Normalization of the area preserving map
Formulation of the problem

Consider 2π–periodic Hamiltonian system with two degrees of freedom with Hamiltonian

$$H(q_1, q_2, p_1, p_2, t) = H_2 + H_3 + H_4 \ldots$$

where H_k is a form of degree k with 2π–periodic coefficients. Notations:

1. $q_i^{(0)}$ and $p_i^{(0)}$ are initial values of variables q_i and p_i
2. $q_i^{(1)}$ and $p_i^{(1)}$ are values of variables q_i and p_i at $t = 2\pi$

If $q_i^{(0)}$ and $p_i^{(0)}$ are small enough, then $q_i^{(1)}$ and $p_i^{(1)}$ are analytic functions of $q_i^{(0)}$ and $p_i^{(0)}$. These functions define a map T of the neighbourhood of equilibrium onto itself.
Let $X(t)$ be the fundamental matrix of the linear canonical system with Hamiltonian H_2. Its elements satisfy the equations

$$
\frac{dx_{js}}{dt} = \frac{\partial H_2}{\partial x_{j+2,s}}, \quad \frac{dx_{j+2,s}}{dt} = -\frac{\partial H_2}{\partial x_{js}},
$$

$$
H_2 = H_2(x_{1s}, x_{2s}, x_{2s}, x_{2s}, t) \quad (j = 1, 2; \quad s = 1, 2, 3, 4)
$$

and the initial conditions

$$
X(0) = E
$$
Linear transformation

Let us introduce new canonical variables

$$
\begin{pmatrix}
q_1 \\
q_2 \\
p_1 \\
p_2
\end{pmatrix} = X(t)
\begin{pmatrix}
u_1 \\
u_2 \\
v_1 \\
v_2
\end{pmatrix}
$$

(5)

New Hamiltonian $G(u_1, u_2, v_1, v_2, t)$ does not contain quadratic terms in u_1, u_2, v_1, v_2:

$$G = G_3 + G_4 \ldots$$
Note that

\[q_1^{(0)} = u_1^{(0)}, \ldots, p_2^{(0)} = v_2^{(0)}. \]

Thus we have to look for the map

\[q_i^{(0)}, p_i^{(0)} \rightarrow u_i^{(1)}, v_i^{(1)}. \]

\[q_i^{(0)} = \frac{\partial S}{\partial p_i^{(0)}}, \quad v_i^{(1)} = \frac{\partial S}{\partial u_i^{(1)}} \]

where

\[S = u_1^{(1)} p_1^{(0)} + u_2^{(1)} p_2^{(0)} + S_3 \left(u_1^{(1)}, u_2^{(1)}, p_1^{(0)}, p_2^{(0)} \right) + \ldots \]
In fact

\[S\left(u_1^{(1)}, u_2^{(1)}, p_1^{(0)}, p_2^{(0)} \right) = \Phi \left(u_1^{(1)}, u_2^{(1)}, p_1^{(0)}, p_2^{(0)}, 2\pi \right) \]

where \(\Phi \left(u_1^{(1)}, u_2^{(1)}, p_1^{(0)}, p_2^{(0)}, t \right) \) satisfies the Hamilton-Jacobi equation

\[\frac{\partial \Phi}{\partial t} + G \left(u_1^{(1)}, u_2^{(1)}, \frac{\partial \Phi}{\partial u_1^{(1)}}, \frac{\partial \Phi}{\partial u_2^{(1)}}, t \right) = 0 \]
Construction of the generating function

We expand Φ in power series in $u_i^{(1)}, p_i^{(1)}$ ($i = 1, 2$)

$$\Phi = \Phi_3 + \Phi_4 + \ldots$$

From the Hamilton-Jacobi equation we have

$$\frac{\partial \Phi_3}{\partial t} = -G_3, \quad \frac{\partial \Phi_4}{\partial t} = -G_4 - \sum_{i=1}^{2} \frac{\partial G_3}{\partial p_i^{(0)}} \cdot \frac{\partial \Phi_3}{\partial u_i^{(1)}}, \quad \ldots$$

From equation (6) we calculate coefficients of forms Φ_k as function of t.
Construction of the generating function

For example, coefficients of

\[\Phi_3 = \sum_{i_1+i_2+j_1+j_2 = 3} \varphi_{i_1i_2j_1j_2} u_1^{(1)}, u_2^{(1)}, p_1^{(0)}, p_2^{(0)} \]

satisfy the following differential equation

\[\frac{d\varphi_{i_1i_2j_1j_2}}{dt} = -g_{i_1i_2j_1j_2}(t) \]

are function of \(x_{ij} \). Initial conditions

\[\varphi_{i_1i_2j_1j_2}(0) = 0 \]

Coefficients \(g_{i_1i_2j_1j_2} \) depend on elements \(x_{ij}(t) \) of fundamental matrix of linear system.
Thus, in order to calculate coefficients

\[s_{i_1i_2j_1j_2} = \varphi_{i_1i_2j_1j_2}(2\pi) \]

of the form \(S_3 \).

We have integrate the following system

\[
\frac{dx_{js}}{dt} = \frac{\partial H_2}{\partial x_{j+2,s}}, \quad \frac{dx_{j+2,s}}{dt} = -\frac{\partial H_2}{\partial x_{js}} \quad (j = 1, 2; \quad s = 1, 2, 3, 4),
\]

\[d\varphi_{i_1i_2j_1j_2} = -g_{i_1i_2j_1j_2}(t) \quad (i_1 + i_2 + j_1 + j_2 = 3) \]

with initial conditions

\[x_{ij}(0) = 0 \quad (i \neq j) \quad x_{ij}(0) = 1 \quad (i = j) \quad \varphi_{i_1i_2j_1j_2}(0) = 0. \]

for interval from \(t = 0 \) to \(t = 2\pi \).
In order to calculate the map up to terms:
of the second order we solve $16 + 20 = 36$ equations
of the third order we solve $16 + 20 + 35 = 71$ equations.
Form of the area-preserving map

The area-preserving map reads

$$
\begin{pmatrix}
q_1^{(1)} \\
q_2^{(1)} \\
p_1^{(1)} \\
p_2^{(1)}
\end{pmatrix}
= \mathbf{X}(2\pi)
\begin{pmatrix}
\tilde{q}_1 \\
\tilde{q}_2 \\
\tilde{p}_1 \\
\tilde{p}_2
\end{pmatrix}
$$

Where

$$
\tilde{q}_j = q_j^{(0)} - \frac{\partial S_3}{\partial p_j^{(0)}} + \sum_{k=1}^{2} \frac{\partial^2 S_3}{\partial p_j^{(0)} \partial q_k^{(0)}} \cdot \frac{\partial S_3}{\partial p_k^{(0)}} - \frac{\partial S_4}{\partial q_j} + O_4
$$

$$
\tilde{p}_j = p_j^{(0)} + \frac{\partial S_3}{\partial q_j^{(0)}} - \sum_{k=1}^{2} \frac{\partial^2 S_3}{\partial q_j^{(0)} \partial q_k^{(0)}} \cdot \frac{\partial S_3}{\partial p_k^{(0)}} + \frac{\partial S_4}{\partial q_j} + O_4
$$
Contents

1. Stability of Nonautonomous Hamiltonian Systems
 - Linear Problem of Stability
 - Nonlinear Problem of Stability

2. Constructive algorithm for the normalization of a periodic Hamiltonian
 - Construction of the map
 - Normalization of the area preserving map

Boris Bardin
Linear normalization of the map

\[
\begin{bmatrix}
q_1 \\
q_2 \\
p_1 \\
p_2 \\
Q_1 \\
Q_2 \\
P_1 \\
P_2
\end{bmatrix} = N
\left|
\begin{bmatrix}
Q_1 \\
Q_2 \\
P_1 \\
P_2
\end{bmatrix}
\right|
\]

(7)

In new variables the map reads

\[
Q_{j}^{(1)} = \rho_j \left(Q_{j}^{(0)} - \frac{\partial W_3}{\partial p_j^{(0)}} + \ldots \right)
\]

\[
P_{j}^{(1)} = \rho_{j+2} \left(P_{j}^{(0)} + \frac{\partial W_3}{\partial Q_j^{(0)}} + \ldots \right)
\]

\[
\rho_j = e^{i2\pi\sigma_j} \quad \rho_{j+2} = e^{-i2\pi\sigma_j}
\]

Boris Bardin
Nonresonant case

Nonlinear close to identity transformation

\[Q_1, Q_2, P_1, P_2 \rightarrow \xi_1, \xi_2, \eta_1, \eta_2 \]

In new variables:

\[\xi_j^{(1)} = \rho_j \left(\xi_j^{(0)} - \frac{\partial Z_4}{\partial \eta_j^{(0)}} + \ldots \right) \]

\[\eta_j^{(1)} = \rho_{j+2} \left(\eta_j^{(0)} + \frac{\partial Z_4}{\partial \eta_j^{(0)}} + \ldots \right) \]

\[Z_4 = W_{2020} \xi_1^{(0)^2} \eta_1^{(0)^2} + W_{1111} \xi_1^{(0)} \xi_2^{(0)} \eta_1^{(0)} \eta_2^{(0)} + W_{0202} \xi_2^{(0)^2} \eta_2^{(0)^2} \]
Normal form of Hamiltonian

\[H = i\sigma_1 \xi_1 \eta_1 + i\sigma_2 \xi_2 \eta_2 - \frac{1}{2\pi} (w_{2020} \xi_1^2 \eta_1^2 + \]
\[+ w_{111} \xi_1 \xi_2 \eta_1 \eta_2 + w_{0202} \xi_2 \eta_2) + O_5 \]

In canonical polar coordinates

\[H = \sigma_1 r_1 + \sigma_2 r_2 + c_{20} r_1^2 + c_{11} r_1 r_2 + c_{02} r_2^2 + O_5 \]

where

\[c_{20} = \frac{1}{2\pi} w_{2020}, \quad c_{11} = \frac{1}{2\pi} w_{1111}, \]
\[c_{02} = \frac{1}{2\pi} w_{0202} \]